UCLA/Getty Conservation Program

A graduate conservation training program focusing on the conservation of archaeological and ethnographic materials


Leave a comment

Bright Lights, Big City-ANAGPIC 2017

The annual ANAGPIC conference is about 6 weeks away and UCLA/Getty students are working hard preparing for the conference.  This year the conference is hosted by the Conservation Center, Institute of Fine Arts, NYU and Columbia University.  Our students are looking forward to attending the conference and of course exploring New York.

This year we have students presenting in both the formal presentations and the lighting round.  Morgan Burgess and Marci Burton will be presenting their study on a 1st edition  BarbieTM doll, work they completed as part of a directed individual study.  Michaela Paulson will be discussing her MA thesis research that looks at how the color of Kingfisher feathers is effected by light, adhesives and pressure when used in cloisonné style jewelry. We’ve also got 4 lighting round projects on a wide variety of materials and projects.  Make sure to check out the abstracts below to learn more about the presentations and these interesting projects.

Good luck to all those presenting and we hope all the students have a great time at this year’s ANAGPIC Conference and in the Big Apple!


Presentation Abstracts

The Technical Analysis, Study, & Treatment of a First Edition 1959 BarbieTM Doll
Morgan Burgess and Marci Burton
Advisor: Ellen Pearlstein

This study focuses on a privately owned, autographed, first edition (c. 1959) BarbieTM doll made from poly(vinyl chloride) (PVC) plastic and stored with contemporary plastic accessories in a contemporary case. Contrary to the more frequently encountered condition that collectors might refer to as “sticky leg syndrome”, where plasticizer migrates from the PVC and deposits on the surface as a tacky liquid, this doll exhibits a bloom of a fugitive, waxy, white solid on the legs from the mid-thighs to the ankles. In addition, the doll was autographed by Ruth Handler, the designer of BarbieTM and a co-founder of the Mattel Corporation. Her signature and the date are now barely legible, as the once sharp lines of ink have migrated within the PVC plastic. The lifetime expectancy of plastics, including PVC materials, can be unpredictable and inconsistent due to a number of polymeric mechanisms that lead to irreversible degradation reactions and component separation.

Multi-spectral imaging and x-radiography were performed on the doll to non-invasively and non-destructively examine the plastic and gain an understanding of the manufacturing procedures. In addition, with collaboration from the Smithsonian’s Museum Conservation Institute (MCI), computed tomography, X-ray fluorescence spectroscopy, Fourier transform Infrared spectroscopy, and Raman spectroscopy data were collected on the plastic components of the BarbieTM doll. The results collected from the analysis provided insight into the process of manufacture, material composition and structural integrity of the doll, assisting in determination of the agents of degradation and identification of the waxy bloom compound.

After the removal of the waxy bloom, the (c.1959) BarbieTM, along with her clothing, accessories and case, were all housed with archival materials and kept in a monitored environment to slow the degradation process and prevent another waxy bloom outbreak on the PVC plastic.

The Effects of Adhesives and Pressure on Color in Kingfisher Feathers
Michaela Paulson
Advisor: Ellen Pearlstein

The Chinese tradition of tian-tsui, “dotting with kingfishers”, utilized blue, blue-green, and purple feathers adhered to a metallic background. This technique appears most prevalent as feather mosaics on clothing, palanquins, and cloisonné style jewelry. Through a technical study of kingfisher feather jewelry from the Ruth Chandler Williamson Gallery at Scripps College and light aging studies and pressure tests completed on mocked up samples of kingfisher feathers adhered to supports, this study evaluates the effects of original and later adhesives and coatings, in addition to effects of mechanical interactions, on the structural colors of the feathers.

Feather specimens from skins of Halcyon smyrnensis, the White-breasted Kingfisher, donated by the US Fish and Wildlife Department, were cut and adhered onto inert quartz plates and subjected to three methods of light aging, with color measurement occurring before and after. These aging methods included museum conditions (UV free), window conditions (UV present), and high intensity UVA conditions, with an additional control group. Adhesive systems tested were those documented as having been used originally or in the conservation of kingfisher featherwork, including: protein glue (isinglass or animal hide), wheat starch paste, methylcellulose, funori, and Paraloid B-72. Characterizing the adhesive used on the Scripps collection items provided supporting technical evidence.

Mechanical disruption of kingfisher feather coloration has been observed as small, straight lines appearing darker blue than the surrounding feather, and which appear to align with mechanically dented areas on the cloisonné jewelry. Such disruptions were replicated on other mock-ups by subjecting them to varying pressure and observing the effect on the color rendering.

Taken together, the results of this study provide insights into kingfisher feather tian-tsui technology, and the effect of adhesive systems and mechanical action on the preservation of these structurally colored feathers.


Lighting Round Presentation Abstracts

The Man in the Ancient Bronze Mirror
Hayley Monroe
Advisors: Professor David Scott and Vanessa Muros

In the spring of 2016 the conservation students at UCLA had the opportunity to work on a collection of ancient Chinese bronze mirrors from Scripps College. The author conserved an example dated from the T’ang period (618-907 CE). During the process of mechanically removing thick areas of burial deposit, an unusual feature emerged on the decorated surface.

The classic T’ang ornamentation is comprised of flowers and birds in flight with flowing ribbons grasped in their beaks, however cleaning gradually revealed a figure of a man, clearly part of the original casting though in a completely different style, quite literally peeking out from behind one of the flowing ribbons.
While portable-XRF analysis so far indicates that the alloy is correct for the period, comparative examples have yet to be found.

With luck and further analysis, the mystery of the man in the mirror can be further illuminated.

Investigation and Treatment of a Carved Wooden “ngoni” from Connecting Cultures Mobile Museum
Mari Hagemeyer
Advisor: Ellen Pearlstein

Connecting Cultures Mobile Museum, a unique institution which brings artifacts to Los Angeles schools for teaching purposes, loaned a Malian ngoni (a type of African lute) to the UCLA/Getty Conservation program for treatment of numerous conservation conditions, including a complex break to the neck of the instrument which was being held together with black duct tape. The object was examined in order to understand both its original construction and its current state, including prior treatments, which may have been carried out by school personnel. Conservation treatment was undertaken on: the complex break to the neck; a second break to a decorative element which was mended with an unknown adhesive; a fatty/waxy spew which was apparent on the wood and skin elements on the body of the instrument; inappropriate stringing with monofilament causing slippage and damage to skin tie elements; the presence of metal tacks used to stabilize these slipping ties; and the presence of insect debris.

International Collaboration for the Creation of a Conservation MA Program in Peru
Lindsay Ocal
Advisor: Ellen Pearlstein

Peru is a country with a wealth of archaeological, ethnographic, and artistic treasures, but no formal graduate education program in conservation. Currently, professional conservators learn the trade through apprenticeships or they must pursue graduate study abroad, mainly in Europe and North America. In order to remedy this problem, the Museo de Arte de Lima (MALI) and the Universidad de Ingeniería & Tecnologia (UTEC) are developing a master’s program in Preventive Conservation. In January 2017, Ellen Pearlstein, a professor in the UCLA/Getty Program in the Conservation of Archaeological and Ethnographic Materials, Lindsay Ocal, a second-year UCLA/Getty student, and Leah Bright, a third-year graduate student in the Winterthur/University of Delaware Program in Art Conservation, were invited to Peru to participate in an intensive week long planning meeting. Conservators, museum professionals, archaeologists, and engineers from museums, sites, and universities across Peru met in Lima to create a curriculum for this new MALI-UTEC master’s program.

Advertisements


Leave a comment

ANAGPIC 2015, here we come!

Our students and faculty are getting ready to head east to attend the 2015 ANAGPIC conference this week. This year, the conference will be co-hosted by the Winterthur/University of Delaware Program in Art Conservation (WUDPAC) and the University of Pennsylvania’s graduate program in Historic Preservation. This is the first time that UPenn will be hosting ANAGPIC. They, along with Columbia University’s Historic Preservation program, joined ANAGPIC a couple of years ago. The addition of these programs broadens the scope of the papers presented and provides additional opportunities for students and preservation professionals to share information about their recent research and projects.

The UCLA/Getty Program will be well represented with 2 speakers and 4 posters. Abstracts of our program’s presentations are found below. For a full list of papers/posters presented and more information on the conference, you can check out the ANAGPIC 2015 website. And make sure to check out our Facebook page and blog for photos from the conference.


Papers

Torqua Cave: Documentation and Condition Assessment of Catalina’s Rock Images
Tom McClintock

The site of Torqua Cave is a rock shelter on Catalina Island, located 20 miles off the coast of Southern California. The largest of the Channel Islands, Catalina has a fascinating geologic history and is rich in marine and lithic resources. It was was inhabited at least 9000 years BP by the people known today as the Island Tongva. The first documentation of Torqua occurred in the early 1970’s with the identification of 19 red pictographs, although by today’s standards this campaign was not sufficiently systematic. To date there is little to no characterization of the site’s physical history.

This paper presents the results of new imaging technologies based on Decorrelation Stretch and an assessment of local climatic conditions and substrate composition, which will lead to a better understanding of the site’s history and deterioration. Following an assessment of condition, the significance of the site to its stakeholders, including the indigenous population, the island’s contemporary residents and its landowners, will be investigated.

Decorrelation Stretch is a method of producing false color digital images that is able to reveal severely faded pigmented decorative surfaces, which has been used successfully here to identify previously unrecognizable and invisible pictographs. Photogrammetry will be performed to create a unified image of the site, which, at roughly 50’ long and on a hillside, has not been possible to present previously. X-Ray Diffraction has identified the pigment used and the composition of its substrate. Portable x-Ray fluorescence (XRF) spectroscopy and ultraviolet/visible/near infrared (UV/Vis/NIR) reflectance spectroscopy will be performed on-site to create a map of the panels’ surface composition for comparison with visual characteristics such as color variation, patterns of deterioration, presence of water from various sources, and accretions. Polarized light microscopy (PLM) will be performed on a thin-section slide of the host rock’s substrate for identification of its composite minerals. Environmental data loggers will be placed at the site to measure ambient temperature (T) and relative humidity (RH) at the site through daytime/nighttime cycles for a year to compliment spot measurements of rock surface temperature, T and RH that were collected in summer 2014.

This information will be used to characterize the degradation patterns of the bedrock panels that comprise this site, focusing on the interrelationship of the rock’s composition, local climate and water transfer through the rock and from external sources. An assessment of the site’s significant and the danger of anthropogenic impact will lead to recommendations concerning future management strategies and protection.

An Analysis of Unidentified Dark Materials Between Inlaid Motifs on Andean Wooden Queros: Preliminary Findings
Heather White

Paramount in the study of Andean civilizations, past and present, are the people’s rituals and ceremonial customs which have pervaded the Inka and post-Inka periods. These rituals mark social and religious occasions with offerings to the gods that ensure economic prosperity and good health. Decorated wooden cups, called qeros, have facilitated these customs through the centuries, witnessing long use-lives as they are passed down from generation to generation. As custodians of ancient Andean rituals and ways of life, contemporary Andeans use the cups as their ancestors did: to hold and transfer libations of blood or the fermented maize beer chicha, to honor, respect, and celebrate religious, social, and economic activities. It is from here that qeros enter museum collections, their use-life ends, and their preservation as vestiges of Andean culture and ritual begins. In recent years there have been technical studies of Andean qero technology focusing on the materials used for the polychrome inlay decoration, identified as an array of natural and manufactured pigments bound by an organic resin from species of the Elagaeia tree (E. utilis and E. pastoensis), locally known as mopa mopa. However, currently there is a lack of information concerning the dark material(s) present around the polychromy, which exhibits peculiar and substantial loss on vessels in many museum collections, sometimes as though it has been physically scraped off. For this study, different dark materials surrounding the polychrome design on a group of qeros belonging to the Fowler Museum at the University of California-Los Angeles were investigated in an effort to characterize them and potentially explain the technical, cultural, and/or ethnographic reasons for their presence and causes for their loss. Various documentation and analytical techniques were employed, including visual analysis, digital photography, UV-induced visible fluorescence, Reflectance Transformation Imaging (RTI), microscopy, portable X-Ray Fluorescence (pXRF) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and Gas Chromatography-Mass Spectrometry (GC-MS). Preliminary results have shown surface modification and ethnographic wear which appear related to the material’s loss. Identifying this material(s), understanding its origin and explaining its loss will contribute to our knowledge of the vessels’ manufacture and/or ethnographic history and use, and guide our transferred custodianship over such artifacts of Andean traditions.

Posters
Technical study of a miniature Tuareg camel saddle using X-radiography and X-ray fluorescence spectroscopy
Elizabeth Anne Burr

A miniature camel saddle from the Fowler Museum is an example of the dyed leather and metal work for which the Tuareg of Niger are known. This saddle made by Hamidan Oumba for the tourist market is a replica of traditional tamzak camel saddles used by the Tuareg elite. It was suggested by an African art scholar that a miniatures such as this would be constructed using the same materials and techniques as a traditional tamzak with a wooden frame. However, X-ray imaging revealed a substrate that included more dense materials in addition to wood. X-ray fluorescence spectroscopy (XRF) data was acquired from a number of locations over different substrate materials (as corresponding to x-ray images), and different types of dyed leather, which were overlaid for interpretation. Correlations were found between the dense substrate material and the trace elements rubidium and strontium used to identify clays. This and the texture seen in X-ray image suggest that clay based components of the frame were manufactures for this object, a deviation from a traditional construction. Also, the turquoise leather was found to be rich in chlorine, copper, and tin, suggesting the use of bronze chloride corrosion to create the leather pigmentation as is traditional among the Tuareg. These results suggest a combination of both innovation and tradition in the construction of this art piece.

Diagnostic Imaging Techniques for the Identification of Tortoise Shell
Lesley Day

The focus of this poster is the documentation of a specific patterning, found within and unique to tortoise shell, made up of random swirling lines, which most likely correspond to the yearly depositions of keratin that occur as the turtle grows. This phenomenon has been observed in passing in some literature, but has not been fully characterized and is little understood in any discipline. The patterning has been observed as topography in some antique tortoise shell samples, and also as darkened lines in an example that appears to have suffered light damage. This poster will illustrate how documentation techniques including UV-induced visible fluorescence and Reflectance Transformation Imaging (RTI) have proven to be extremely useful in observing and documenting the pattern, and how characterization and further understanding of the pattern can be used as a diagnostic criteria for distinguishing tortoise shell from imitative materials such as plastic and horn.

The documentation illustrated in this poster is one component of my master’s thesis research about light-induced alterations to tortoise shell, and specifically how light may induce alterations to the patterning described, such as darkening and increased visibility. For the study, two taxidermied hawksbill turtles (Iretmochelys imbracata) were generously donated by the US Fish and Wildlife Department of Forensics, and the scutes from one turtle carapace were removed for use as the sample material. The samples are currently undergoing accelerated light aging under three different parameters: exposures mimicking window lighting (which filters some UV), museum lighting (which filters nearly all UV) and a chamber emitting UVA radiation. An important outcome of this research will be a better understanding of photochemically induced alterations in tortoise shell, and preventive lighting guidelines for tortoise shell materials based on the findings of the light aging study.

Piecing together the history of an 18th century printed Armenian Prayer Scroll
Colette Khanaferov

The use of prayer scrolls along with other religious art and literature have for played a significant role in the Armenian culture since the 5th century. The scope of this study is to investigate the history and materials used on a printed, 18th century Armenian prayer scroll. This analysis involves the examination of the scroll with the use of non-destructive analytical photography, fiber optic ultraviolet-visible and near infrared reflectance spectroscopy, X-ray fluorescence and Raman spectromicroscopy. The study attempts to identify and characterize pigments, colorants, ink, and the paper used to construct the prayer scroll. The text along with the illustrations have been translated and studied in an attempt to provide an overall understanding of the scroll, printing techniques, religious significance, use, as well as the traditional practices in the Armenian culture in the 18th century.

Preliminary Research on Biocorrosion of Archaeological Glass
William Shelley

The scope of this research is to investigate the mechanisms and process of biologically induced corrosion of archaeological glass. Archaeological glass samples from Greece and Cyprus suspected to have undergone biocorrosion were analyzed to characterize the chemical composition, microstructure, and topography to determine the difference in the chemistry of the glass surface and the bulk. Analytical techniques included scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray fluorescence (XRF) spectroscopy. Modern glass samples were placed in petri dishes with sulfuric and oxalic acid to simulate potential corrosion from acids produced by microorganisms. This research aims to fill a gap in our knowledge on glass biocorrosion and to evaluate the effects of microorganism on archaeological glass.


Leave a comment

ISA 2014

Here at the UCLA/Getty Program, we’re gearing up for the International Symposium on Archaeometry (ISA), taking place May 19-23. This year, the ISA is being held at both the Getty Villa and at UCLA, organized by UCLA/Getty Program chair Dr. Ioanna Kakoulli and Dr. Marc Walton, senior scientist at NU-ACCESS (and formerly a scientist at the Getty Conservation Institute). Our program is well represented at the conference, with several posters and paper presentations and faculty chairing various sessions.

If you’re attending the conference, make sure to check out the presentations below by the UCLA/Getty crew. You can find more information on the conference here and the schedule and abstracts here. We’ll be posting pictures on our Facebook page so make sure to check out the album ISA 2014 throughout the week. We’ll also be posting on our twitter account @UCLAGettyCons using the hashtag #isa2014.


POSTER SESSION I
Monday, May 19 2:30-4:30, Getty Villa

Provenance Study of Obsidian Artifacts from the Fowler Museum Collection (UCLA) using a Handheld X-ray Fluorescence Spectrometer
Kristine Martirosyan-Olshansky1, Christian Fischer1 and Wendy Teeter2

1. Cotsen Institute of Archaeology, UCLA, Los Angeles
2. Fowler Museum, UCLA, Los Angeles

Over the past few decades, research on geochemical characterization of obsidian archaeological artifacts and geological samples from the greater American Southwest has been extensive, primarily for provenance purposes (Shackley, 1995; Ambroz et al 2001; Eerkens and Rosenthal, 2004; Ericson et al., 2004; Eerkens et al., 2008). Using different analytical techniques, such as neutron activation analysis (NAA), inductively coupled plasma mass spectrometry (ICP-MS), and laboratory and handheld X-ray fluorescence (labXRF and pXRF), the elemental fingerprint of obsidian artifacts can be established and correlated to known geological sources. This paper presents preliminary results for the geochemical characterization of an obsidian assemblage from the Fowler Museum collections consisting of one hundred fifty-six obsidian samples from various sites in California. The assemblage was analyzed with a Bruker handheld XRF to determine the number of groups with different geochemical signatures. Data were compared to \geological and reference samples from known California, Arizona, and Eastern Oregon sources in an attempt to assign individual groups to specific obsidian sources. Using elements bivariate plots and multivariate statistics, and beside several outliers, six distinct obsidian groups were identified based primarily on the concentrations of iron (Fe) and some trace elements, in particular strontium (Sr), yttrium (Y), zirconium (Zr) and Niobium (Nb). Although obsidian source attribution remains challenging for such a diverse assemblage, one artifact group could be confidently assigned to the Obsidian Butte source in San Diego County while a large number of samples from obsidian-rich northern California sites cluster well with sources located within the Coso volcanic mountain range in central-eastern California. Finally, the results for these groups are discussed in terms of artifacts spatial and temporal distribution which provide useful insight on procurement patterns for this material in California.

References
Ambroz, J.A., Glascock, M.D. and Skinner, C.E., 2001. Chemical Differentiation of Obsidian within the Glass Buttes Complex,
Oregon. Journal of Archaeological Science, 28, 741-746.
Eerkens, J.W. and Rosenthal, J.S., 2004. Are obsidian subsources meaningful units of analysis?: temporal and spatial patterning of subsources in the
Coso Volcanic Field, southwestern California. Journal of Archaeological Science, 31, 21-29.
Eerkens, J.W., Spurling, A.M. and Gras, M.A., 2008. Measuring prehistoric mobility strategies based on obsidian geochemical and technological
signatures in the Owens Valley, California. Journal of Archaeological Science. 35, 668-680.
Ericson, J. E. and Glascock, M.D., 2004. Subsource Characterization: Obsidian Utilization of Subsoures of the Coso Volcanic Field, Coso Junction,
California, USA. Geoarchaeology: An International Journal., 19, 8, 779-805.
Shackley S.M., 1995. Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. American
Antiquity
, 60, 3, 531-551.

 
The Technology of Late Bronze Age/Early Iron Age Glass in the Mediterranean: Analytical Studies of Vitreous Materials from Lofkënd
Vanessa Muros,1,2 Nikolaos Zacharias2 and John K. Papadopoulos,3

1. UCLA/Getty Conservation Program, Los Angeles, CA, USA.
2. Dept. of History, Archaeology and Cultural Resources Management, Univ. of Peloponnese, Kalamata, Greece.
3. Cotsen Institute of Archaeology, UCLA, Los Angeles, CA, USA.

The application of archaeometric techniques to the study of archaeological glass has been critical to identifying how and where this material was manufactured. Despite the research that has been conducted to date, questions still remain about the raw materials used and the location of primary glass production centers, especially during the Late Bronze Age and Early Iron Age. Investigations of glass from sites such as Frattesina in Italy and Elateia in Greece have revealed new technological approaches that appear during this time period and possibly the identification of new regions where glass was produced. This challenges the idea that glass in the Mediterranean was imported from either Egypt or the Near East. Only with additional investigations of ancient glass from this region and time period can technology and production be better understood. This paper aims to add to the current body of knowledge of LBA/EIA glass production by presenting the study of vitreous materials from the tumulus of Lofkënd in southwestern Albania. In this ongoing project, several analytical techniques (XRF, SEM-EDS, ICPMS, SIMS) were employed to identify the technology of a group of 12th-9thc. BC glass and faience beads. The data obtained on trace elements and stable isotopes will allow for the method of manufacture of these materials from Lofkënd to be identified and to determine where the glass and faience was made. The results will provide crucial information to our understanding of ancient technology, trade, and glass manufacture during the transition from the Bronze to the Iron Age, and the relation of Lofkënd to production centers in the Mediterranean, Egypt and the Near East

 
POSTER SESSION II
Wednesday, May 21 2:30-4:30 California NanoSystems Institute (CNSI), UCLA

Application of VPSEM-µRS for SERS analysis of archaeological textiles
Diana C. Rambaldi1, Sergey V. Prikhodko2, Vanessa Muros3, Elizabeth Burr3, and Ioanna Kakoulli2,3

1. Conservation Center, Los Angeles County Museum of Art, 5905 Wilshire Blvd, Los Angeles, CA 90036, United States.
2. Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, 3111 Engineering V, Los Angeles, CA 90095-1595, United States.
3. UCLA/Getty Conservation Program, Cotsen Institute of Archaeology, University of California, Los Angeles, 308 Charles E. Young Drive North A210 Fowler Building/Box 951510, Los Angeles, CA 90095-1510, United States.

The site of Huaca Malena on the coast of southern Peru is a platform and cemetery of the Wari state from the Middle Horizon period (AD 700 -1100). The cemetery has yielded mummy textiles, some of which are typical for the region, and others with motif traditions indicative of the Sierra Andes of southeast Peru. It is unclear if this indicates migration, exchange, or transmission of aesthetics. Analytical methods for the identification of organic colorants on archaeological textiles can offer a way to retrieve information from these delicate artifacts. Among other analytical methodologies, Surface-Enhanced Raman Spectroscopy (SERS), achieving single molecule detection, has recently emerged as a powerful technique for the identification of colorants from size-limited and irreplaceable archaeological materials1. For direct, extractionless SERS analysis of colorants on textiles, silver nanoparticles (AgNPs) are deposited on a single fiber and SER spectra are acquired using a micro-Raman spectrometer (μRS)2. Since the deposition of AgNPs is a crucial step to generate the SER effect, Scanning Electron Microscopy (SEM) appears to be an ideal tool to evaluate the AgNP coverage and locate suitable areas for successful and reproducible analysis.

In this study, direct, extractionless SER analysis of organic colorants on single fibers was performed for the first time using a μRS interfaced with a variable pressure SEM (VPSEM). An alpaca fiber dyed with Peruvian cochineal and a wool fiber dyed with Indian madder were treated with a silver colloid and introduced in the SEM chamber. The high resolution imaging of SEM was used to select areas showing diverse deposition of AgNPs. SERS analyses were then directly carried out in these areas without moving the sample. The analysis of areas with a thick layer of nanoparticles or without nanoparticles resulted in low signal to noise ratio or no signal at all. Areas with a thin layer of deposited nanoparticles led to optimal reproducible spectra characteristic of the dye molecules. The results clearly illustrated the potential of this quasi non-destructive approach for the identification of different organic colorants while information can also be obtained on the AgNP coverage as well as the morphology of the fibers. This methodology will be applied to study collections of Peruvian archaeological textiles including that from the site of Huaca Malena. The application of VPSEM-µRS, coupled with energy-dispersive spectroscopy (EDS), will also provide a unique opportunity to study a variety of other archaeological materials including pigments, glazes, and glasses.

References
1. Pozzi, F., Poldi, G. De Luca, E., Guglielmi, V. Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus. Archaeol Anthropol Sci 2012, 4:185–197
2. Brosseau CL, Casadio F, Van Duyne RP: Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc 2011, 42:1305–1310.

 
POSTER SESSION III
Thursday, May 22 2:30-4:30 California NanoSystems Institute (CNSI), UCLA

Non-invasive Analysis of Chinese Blue-and-white Porcelain from Indonesia and the Philippines
Ellen Hsieh1 and Christian Fischer1

1. Cotsen Institute of Archaeology, UCLA, Los Angeles, USA.

Blue-and-white porcelain has been a symbol of Chinese material culture for the last seven centuries and has spread all over the world with high impact on other cultures. Export blue-and-white porcelain was usually manufactured in common kilns as opposed to the ware from official kilns reserved for imperial court use, rewards and diplomacy purposes. During the 16th-17th century, Jingdezhen and Zhangzhou were the two main production
centers from which blue-and-white was exported followingnewly established global trading networks. The distinction between products from these two centers is of prime importance for archaeological research because it relates to topics such as trade routes, value or class. However while the provenance of complete porcelain pieces can often be easily identified from stylistic and technology-related features, attribution of small sherds to specific production sites remains a challenging task that requires a more in-depth analysis of the material. During the last decades, most scientific studies have focused on ware from official kilns (Yu and Miao, 1996; Wu et al., 2000; Wen et al., 2007) and only recently, owing to archaeological excavations of common kilns at both sites, useful reference data became available (Wu, et al., 2007; Ma, et al., 2012) providing solid support for provenance studies (Dias, et al., 2013). In the research presented here, blue-and-white porcelain sherds from Banten (Indonesia) and Visayan (Philippines) were analyzed with handheld XRF (p-XRF) and UV/Vis/NIR spectroscopy to acquire compositional data of the ceramic body, glaze and blue pigment and to evaluate the potential of these non-invasive and portable techniques at discriminating different source materials and production sites. Beside the expected use of Mn-rich cobalt ores for the blue pigment, p-XRF results have indicated that products from Jingdezhen and Zhangzhou common kilns can be successfully differentiated based primarily on the concentrations of some key trace elements such as Zr, Ti and Sr, most likely correlated to the composition of local raw material sources. The approach appears therefore promising and could offer a fast and cost-effective way for the characterization and sourcing of export blue and white porcelain sherds, especially for field analysis.

References
DIAS, I.M., PRUDÊNCIO, I.M., PINTO DE MATOS, M.A. and RODRIGUES L.A., 2013. Tracing the origin of blue and white Chinese porcelain ordered for the Portuguese market during the Ming dynasty using INAA. Journal of Archaeological Science 40, 3046-3057.
MA, H., ZHU, J., HENDERSON, J. and LI, N., 2012. Provenance of Zhangzhou export blue-and-white and its clay source. Journal of Archaeological Science 39, 1218-1226.
WEN, R., WANG, C.S., MAO, Z.W., HUANG, Y.Y. and POLLARD, A.M., 2007. The chemical composition of blue pigment on Chinese blue-and-white porcelain of the Yuan and Ming dynasties (AD 1271-1644). Archaeometry 49, 1, 101-115.
WU, J., LEUNG, P.L., Li, J.Z., STOKES, M.J. and LI, M.T.W., 2000. EDXRF studies on blue and white Chinese Jingdezhen porcelain samples from the Yuan, Ming and Qing dynasties. X-ray Spectrometry 29, 239–244.

 
A Preliminary Study on a Bronze Incense Burner Dated to the Eastern Jin Dynasty (317-420A.D.) in Nanjing City, China
Wang Xiaoqi1, Chen Dahai2, Wang Hong2 and Huang Xiaojuan3

1. Division of Archaeology, Department of History, Nanjing University, Nanjing, China.
2. Division of Archaeology, Nanjing Municipal Museum, Nanjing, China.
3. Conservation Lab, Archaeological Institute of Shaanxi Province, Xi’an, China.

One of the significantly archaeological discoveries in the year of 2011 in Nanjing city, China, was a grand brick chambered tomb dated to 317-420A.D., associated with many spectacular findings, such as golden ornaments, lacquer vessels, natural beeswax, celadon containers, alchemical pills, as well as other metal objects. In terms of historical documentation, the tomb location belonged to a cemetery of a high rank honorable family, mostly presumed to be well-known alchemical pioneers and active practitioners during the Eastern Jin Dynasty (317-420A.D.), a flourishing period of Taoism in ancient China. Aided by local archaeologists, a metal incense burner composed of a bird-formed lid, a body decorated with birds and human production shaped figurines and a plain basin-patterned base with an auspicious animal lying in the center, was chosen to be firstly explored by scientific methods. The whole vessel was well preserved and nearly intact, except base edge with a small-sized cut. Therefore, a tiny piece along the cut was sampled and analyzed by using x-ray fluorescence, μ x-ray fluorescence, metallographic microscopy, as well as scanning electron microscopy coupled with EDS to determine the composition, structure and manufacturing technology.

The semi-quantitative x-ray fluorescence analysis showed the sample mainly had copper, silica, tin, lead, iron and aluminum, with potassium, chlorine, calcium and phosphorus in minor. After detection by using μ x-ray fluorescence on a fresh section, map scanning revealed copper was mostly rich in the whole body, with minor evenly distributed tin and dottedly distributed lead, whereas other elements including silica, aluminum, potassium, chlorine, calcium and phosphorus were mainly found along the surface, which were attributed to the contaminants from the burial soils, and iron probably due to an adjacent iron ink slab. The metallographic observation unveiled a typical dendritic casting microstructure, but dendritic segregation was unobvious because of low tin content. The results conducted by scanning electron microscopy equipped with EDS were in consistent with metallographic observation and μ x-ray fluorescence result, especially EDS analysis indicated tin content was averagely over 4%, whereas lead was 1% to 2%. The experiments revealed the burner base was mainly made of copper by casting technology; tin was purposely added in; lead was probably spontaneously brought in from either copper ores or remelting process. It was different from local archaeologist’s original opinion, which was inclined to be an artifact made of pure copper, referenced from a historical record written by contemporaneous alchemists, one of whom was mostly presumed to be the potential tomb owner. However, deep investigation needed to be performed on diverse parts of the burner together with other excavated artifacts in order to seek more powerful evidence to provide a reasonable answer.


Leave a comment

ANAGPIC 2014, here we come!

We’re getting ready to head out later this week to the annual meeting of the Association of North American Graduate Programs in Conservation (ANAGPIC) hosted this year by our colleagues at the Art Conservation Dept., Buffalo State College.  We’re really looking forward to the student papers presented on Friday, the professional talks on Saturday focusing on “Extreme Conservation”, and meeting with colleagues and friends.

We’re also hoping the rumors of spring-like weather back east are true, since some of us are so acclimatized to the weather out here, anything below 65 causes hypothermia (Did I mention it’ll be in the 80’s here this week?!)

This year we’re excited to have our program represented again at the conference.  We have two students, and an alum, presenting. Below is a preview of their talk titles and abstracts.

And make sure to stay tuned for posts and pictures on our Twitter feed (@uclagettycons) and our Facebook page (https://www.facebook.com/UCLAGettyProgram) from #anagpic2014!


Analysis and Conservation of a Pair of Cherokee Black-dyed Buckskin Moccasins: Preliminary Results
Alexis North (3rd year student, currently at University of Pennsylvania Museum of Archaeology and Anthropology)

Chemical Analysis of Archaeological Peruvian Textiles
Betsy Burr (1st year student)

Delaying the Inevitable: An Investigation of Plastic Deterioration in Joseph Beuys Multiples
Nicole Ledoux (alum ’12, currently at the Straus Center for Conservation and Technical Studies, Harvard Art Museums)




Post by Vanessa Muros, Conservation Specialist, UCLA/Getty Program


1 Comment

Looking forward to the Association of North American Graduate Programs in Conservation annual meeting

 

LA-NAGPIC2013 logo

 

The UCLA/Getty Program—with a lot of help from our friends—is hosting the 2013 annual meeting of the Association of North American Graduate Programs in Conservation on April 25-27. This is the first time ever that this meeting will take place in Los Angeles! We’re so excited that our students designed the swank logo for the conference L-A-NAGPIC 2013. This meeting brings together students, faculty and staff from North American programs offering graduate degrees in conservation, including Buffalo State College, NYU (Conservation Center of the Institute of Fine Arts), Queens University, UCLA/Getty, the Winterthur-University of Delaware Program in art Conservation, and the Straus Center at Harvard which offers graduate fellowships. We are expecting close to 160 guests to visit in April.

Student papers will be presented on April 26 at the Getty Center, with twelve talks covering a broad array of topics in the conservation and preservation of cultural heritage including silk textiles, a 17th century manuscript, a painting by Georges Seurat, an orangutan taxidermy specimen, pinball art, and plant-based contemporary art as a sampling. Our own students at the UCLA/Getty Program in Archaeological and Ethnographic Conservation will present two papers: Caitlin Mahony is presenting her research and treatment of an American Indian quillwork leather vest in the collection of the Fowler Museum at UCLA, and Casey Mallinckrodt will present her technical research and condition assessment of a Ptolemaic Egyptian sarcophagus from the San Diego Museum of Man. Their abstracts follow this post.

The second day of talks at the UCLA Lenart Auditorium, in the Fowler Museum on Saturday April 27, includes an Honorary Angelica Rudenstine Lecture presented by Robyn Sloggett, Director of the Centre for Cultural Materials Conservation at the University of Melbourne, Australia. Prof. Sloggett’s compelling topic is “Why conservation is critical to the future of our planet”. This lecture will be followed by our own Andrew W. Mellon Education Resident and Visiting Assistant Professor Tharron Bloomfield, moderating a panel discussion that builds on the specialties emphasized in the UCLA/Getty Program. “Conserving Communities” will include an indigenous archaeologist Desiree Martinez, an indigenous textile conservator Rangi Tena koe, as well as Judy Baca and Robyn Sloggett, scholars whose own work in preservation incorporates community members. Saturday will include a poster session with three UCLA/Getty posters, one authored by three students describing varied approaches to American Indian leather moccasin repairs, another about the use of pigment identification performed on the Ptolemaic child sarcophagus lid as an aid in identifying reused structural elements, and a third poster about the associated values considered in the development of a site management plan for the location of the Woodstock Festival of 1969.

ANAGPIC 2013 promises to promote research, conservation excellence, fun and SoCal weather!

Prof. Ellen Pearlstein

__________________________________________________________________________

Mending Leather and Quillwork on a Native American Vest: The Challenges and Achievements
Caitlin Mahony

In the fall of 2012, treatment was undertaken on a leather Native American vest with quillwork decoration. This paper will discuss the challenges that were encountered during the mending of the damaged leather and solutions that were found, which provided stability without further compromising the condition of the substrate. The vest to be discussed is from the Fowler Museum and is loosely attributed to the Sisseton (Santee) Sioux Indians. Its major condition issues were creases, tears, and losses to the leather, especially in the armhole region, which presumably occurred from repeated abrasion and exposure to moisture from extensive use. Pervasive insect damage throughout the quillwork left a significant amount of quills lost, lifting, or insecure and in need of stabilization. An analysis of a sample of collagen fibers from the leather revealed a shrinkage temperature in the range of 32-36, far below the range that would be expected of stable oil tanned leather, as is commonly used by the tribes of the Sioux Nations. Due to the instability of the leather, it was deemed necessary to develop a treatment that would avoid excessive use of solvents, exclude any use of water, and avoid using heat to reactivate adhesives. After evaluating several adhesives and carriers through the development and testing of mock repairs with chamois, an interior hinge system of Reemay with adhesive film that reactivated with solvent was used with great success. The same adhesive film with Tyvek carrier was used to stabilize broken and lifting quills. The mends to the leather and quill both demonstrated a desired strength and flexibility. Details of these mending procedures will be discussed as well as the decision-making process that determined the treatment materials and methods.

This Old Foot: Technical analysis of a Ptolemaic Child Sarcophagus to Identify Structural Components Repurposed from other Ancient Coffins
Catherine (Casey) S. Mallinckrodt

It is well known that Egyptians constructed highly elaborate and protective structures to transport the dead into the afterlife. While it might seem inconsistent that coffins would be emptied of their inhabitants and repurposed, in the approximately 3000 thousand years during which ancient Egyptian funerary practices involved decorated coffins, there is evidence of significant reuse to meet the needs of the always-flourishing funerary business.   Through the waves of “Egyptomania” that began after the 18th century rediscovery of ancient Egyptian tombs, coffin parts have been repurposed to meet the demands of collectors.

The first stages of the technical analysis of a Ptolemaic Child Sarcophagus from the San Diego Museum of Man has revealed the possibility that both the foot block and the carved face may have been reused from different coffins and at different times.    This talk will describe the structural and stylistic differences that suggested reuse, describe the analytic methods used to distinguish the component parts, and present the relevant results of the analysis. The content of scholarly consultation and research will be presented including a discussion of both ancient and modern contexts of reuse.

The description of the structure and methods of manufacture will be accompanied by graphic illustrations and x-radiographic images. Comparison of pigment mixtures and the microstructure of particles from the head, body and foot will be accompanied by photomicrographs, x-ray fluorescence analysis, and forensic photographic images that demonstrate the presence of Egyptian blue.

It is hoped that this talk will offer meaningful information about the effectiveness of these analytic techniques in exploring characteristic differences in components of an ancient object, as well as considering the pathway this object might have taken from Ptolemaic Egypt to a conservation lab in coastal California.


Leave a comment

UCLA/Getty Program takes on the SAA’s (and Honolulu)

This spring students, staff and faculty of the UCLA/Getty Conservation Program will be attending the Society for American Archaeology’s Annual Meeting (April 3-7, in Honolulu, HI) and representing the field of archaeological conservation. Faculty member and chair, Dr. Ioanna Kakoulli, and I have co-organized a symposium titled Archaeometric Methods, Archaeological Materials & Ancient Technologies which takes place on Sat. April 6th and is sponsored by the Society for Archaeological Sciences.

The session brings together professionals in the field of archaeology and conservation to present their research on the use of instrumental analysis for the characterization of ancient and historic materials. The aim is to create a discussion of the advantages and limitations of different techniques based both on hardware design and application methodology and the pitfalls in the acquisition and interpretation of results. The papers will touch on the methods of acquiring the data and how the data is treated in light of the complexities posed by the heterogeneous nature of archaeological materials and the alterations that they undergo during burial. There will be a focus on how condition/preservation issues, the heterogeneity of the artifacts and the difficultly of analyzing artifacts that cannot be sampled affect the techniques that can be used, the choice of analytical methodology and the interpretation of results. By addressing these limitations, and especially by having conservators speak on the impact of condition and deterioration on the overall composition and stability of archaeological materials, a new perspective can be added to the discussion of instrumental analysis that would be beneficial to any researcher working on ancient materials.

In addition to the research the presenters will introduce, the session will increase the presence of conservators, conservation scientists and conservation graduate students at this archaeological conference. The hope is it that it will introduce those not familiar with our field to conservation-related research, increasing the awareness of the archaeological community to the work conducted by conservators and their contribution to larger archaeological goals and research questions. This collaboration with and outreach to the archaeological community has been a focus of the UCLA/Getty Program and our hope is that this session will be an extension of that work and help bridge the gap that still exists between these two professions.

Not only are we happy about getting to spend some time in Honolulu, but we are excited to have two of our students presenting their research at the session. We have a few papers that will be given by emerging archaeological conservators giving them an opportunity to present their research at this early stage in their career. They’ll also have the opportunity to connect with archaeologists and other professionals which will help form collaborations in the future. As a result of this session, I hope these emerging conservators will wish to continue this kind of outreach during their conservation careers and work to further integrate conservation into the practice of archaeology.

If you are attending the SAA’s, make sure to come to our session to hear the exciting talks listed below (after the photo). Abstracts for the conference can be accessed here. Hope to see you in Honolulu!

beautiful beach in Hawaii (Not Honolulu or Oahu, but on the Big Island. Just wanted to set the mood)

A beautiful beach in Hawaii. It’s not Honolulu or Oahu, but the Big Island. It’s just in here to add context and because I’m sure Honolulu will be as beautiful.

Vanessa Muros
Conservation Specialist, UCLA/Getty Conservation Program

_______________________________________________________________________________________________________

Archaeometric Methods, Archaeological Materials & Ancient Technologies

Empire Without A Voice: Phoenician Iron Metallurgy and Imperial Strategy at Carthage
Brett Kaufman, PhD candidate, Cotsen Institute of Archaeology, UCLA

Analyzing deteriorated glass using pXRF: A preliminary study of vitreous beads from the Late Bronze Age/Early Iron Age tumulus of Lofkënd in Albania
Vanessa Muros, Conservation Specialist, UCLA/Getty Conservation Program

Several Roads Lead to Chichén Itzá: Tracing the Fabrication Histories of Metals Deposited in the Cenote Sagrado
Bryan Cockrell, PhD candidate, Anthropology, UC Berkeley
José Luis Ruvalcaba Sil, Research Scientist, Instituto de Física, UNAM
Edith Ortiz Díaz, Researcher in Archaeology, Instituto de Investigaciones Antropológicas, UNAM

Improving the Diagnostic Capabilities of GC-C-IRMS Analyses of Organic Residues in Archaeological Pottery
Michael W. Gregg, and Greg F. Slater
School of Geography and Earth Sciences, McMaster University

Comparison between 3D Geometric Morphometric Analysis over Traditional Linear Methods in Lithic Assemblages; Tor Faraj, Jordan, a Middle Paleolithic Site as a Case Study
Colleen A Bell, Miriam Belmaker and Donald Henry, Dept. of Anthropology, The University of
Tulsa

Characterization of 5th C. B.C. Athenian Pottery Black Gloss Slips
Marc Walton and Karen Trentelman, Getty Conservation Institute
Jeffrey Maish and David Saunders, J. Paul Getty Museum
Brendan Foran3, Neil Ives3, and Miles Brodie, The Aerospace Corporation
Apurva Mehta, Stanford Synchrotron Radiation Laboratory

Lipid Analysis and Plant Residue Identification: New Perspectives
Cynthianne Debono Spiteri , Dept. of Archaeology, BioArCh, University of York & Max Planck
Institute for Evolutionary Anthropology
Amanda Henry, Max Planck Institute for Evolutionary Anthropology
Oliver E. Craig, Dept. of Archaeology, BioArCh, University of York

Integrated Archaeometric Analysis of the Context and Contents of an Ulúa-style Marble Vase from the Palmarejo Valley, Northwest Honduras
E. Christian Wells, Ph.D., Department of Anthropology, University of South Florida

The Jaina-style Figurine Project: Portable Technologies, Advantages and Limitations
Christian Fischer, Dept. of Materials Science and Engineering and UCLA/Getty Conservation
Program
Carinne Tzadik, MA student, UCLA/Getty Conservation Program
Ioanna Kakoulli, Dept. of Materials Science and Engineering and Chair,UCLA/Getty Conservation
Program
Sandra L. Lopez Varela, Dept. of Anthropology, Universidad Autónoma del Estado de Morelos
Christian De Brer, Conservator, Fowler Museum at UCLA
Kim Richter, Research Specialist, Getty Research Institute

Sandstone raw materials from Eastern France: Evaluation of Non-Invasive Portable Technologies as Potential Tools for Characterization and Sourcing
Brittany Dolph, MA Student, UCLA/Getty Conservation Program
Christian Fischer, Dept. of Materials Science and Engineering and UCLA/Getty Conservation Program

______________________________________________________________________________________________________________________________-

Analyzing deteriorated glass using pXRF: A preliminary study of vitreous beads from the Late Bronze Age/Early Iron Age tumulus of Lofkënd in Albania
Vanessa Muros, Conservation Specialist, UCLA/Getty Conservation Program

The availability of portable analytical instrumentation, such as portable xray fluorescence spectroscopy (pXRF), has allowed for more archaeometric research to be conducted on archaeological materials in the field, where artifacts can be analyzed in situ. The application of this technique to the study of ancient materials has been advantageous in that many more artifacts can be analyzed non-destructively, without the need for sampling. Issues are often encountered, however, in the characterization of these objects due to their heterogeneity because of the materials used, method of manufacture or the alteration materials undergo during burial.

This paper will describe the characterization of a group of vitreous beads excavated from the Late Bronze Age/Early Iron Age tumulus (14th-9th c. BC) of Lofkënd in Albania. The beads, which exhibited varying degrees of deterioration and corrosion, were analyzed using pXRF in order to identify the raw materials used. The factors considered in the creation of the analytical methodology will be presented. The challenges encountered in the interpretation of the results, and the importance of understanding the deterioration processes of archaeological materials when studying ancient artifacts will be discussed.

The Jaina-style Figurine Project: Portable Technologies, Advantages and Limitations
Christian Fischer, Dept. of Materials Science and Engineering and UCLA/Getty Conservation
Program
Carinne Tzadik, MA student, UCLA/Getty Conservation Program
Ioanna Kakoulli, Dept. of Materials Science and Engineering and Chair,UCLA/Getty Conservation
Program
Sandra L. Lopez Varela, Dept. of Anthropology, Universidad Autónoma del Estado de Morelos
Christian De Brer, Conservator, Fowler Museum at UCLA
Kim Richter, Research Specialist, Getty Research Institute 

Of all sites in the Mexican state of Campeche on the Yucatán Peninsula’s Gulf coast, the islet of Jaina has been in the spotlight for many years, principally, due to the very fine clay figurines found in great numbers within burial sites. Compared to the archaeological/art historical analysis, the archaeometry of Jaina figurines has been less extensive. The Jaina style figurine project applies a multiscale and multianalytical approach based on noninvasive and non-destructive testing for the chemical fingerprinting of the figurines and to investigate the degree of variability in the chemistry and technology among the figurines relative to the analytical uncertainties. Here we present preliminary data obtained using non-invasive technology based on spectral imaging (SI), Xray fluorescence (XRF) spectroscopy and ultraviolet, visible, near infrared (UV/Vis/NIR) reflectance spectroscopy for the characterization of the clay body and blue paint decoration. The advantages and limitations of the non-invasive techniques employed will be discussed in the context of material heterogeneity and variability, geometry and stylistic features of the figurines.

Sandstone raw materials from Eastern France: Evaluation of Non-Invasive Portable Technologies as Potential Tools for Characterization and Sourcing
Brittany Dolph, MA Student, UCLA/Getty Conservation Program
Christian Fischer, Dept. of Materials Science and Engineering and UCLA/Getty Conservation Program

In the Alsace region of eastern France, sandstone is an important local resource which has been utilized by societies throughout time. Although earliest archaeological evidence of usage dates back to the Neolithic, it is mainly during the Gallo-Roman and Medieval periods that this sandstone was extensively quarried, and nowadays is still commercially exploited for building and conservation purposes. Primarily composed of quartz, feldspars,
and various types and amounts of micas and clay minerals, the sandstone types present variegated colors and belong to different levels of the Buntsandstein, a lithostratigraphic unit of lower Triassic age. This research explores the potential of X-ray fluorescence (XRF) and ultraviolet/visible/near infrared (UV/Vis/NIR) spectroscopy for the non-invasive characterization of different Buntsandstein sandstone lithotypes using portable instrumentation. The two complementary non-invasive techniques allow identification of both elemental and mineralogical compositions while providing a useful alternative for the analysis of archaeological artifacts and/or field investigations where sampling is not an option. Furthermore, they can be used to document current condition and possible alteration processes in order to identify decision-making criteria for conservation treatments. Preliminary results obtained on reference samples from modern quarries exploiting the Buntsandtein sandstone will be presented and discussed with particular focus on provenance and sourcing.


Leave a comment

2 students awarded FAIC George Stout Grant

Congratulations to Brittany Dolph and Alexis North who were each awarded an FAIC George Stout grant to help support their attendance at conferences this spring, where they each will be presenting.

Brittany will present at this year’s Society for American Archaeology annual meeting in Honolulu, HI, April 3-8. Her paper, “Sandstone raw materials from Eastern France: Evaluation of non-invasive portable technologies as potential tools for characterization and sourcing”, is based on research she conducted with UCLA/Getty faculty Dr. Christian Fischer as part of the class “Portable Technology for Materials Analysis”.  Her paper will be presented in the session “Archaeometric Methods, Archaeological Materials and Ancient Technologies” organized by UCLA/Getty Program chair Dr. Ioanna Kakoulli and staff member Vanessa Muros, and sponsored by the Society for Archaeological Sciences.

Alexis will be presenting at this year’s AIC Annual Meeting in Indianapolis, IN, May 29-June 1st in the Objects Specialty Group session. Her paper, “Beyond the Visible: Macro and Micro Analytical Forensic Imaging for the Documentation and Investigation of Archaeological Objects” is a continuation of work she began back in the fall of 2012 when she tested the use of a tunable forensic light source to image the polychrome decoration on a pre-Columbian vessel she was treating. Since then, Alexis has been working with UCLA/Getty Program chair Dr. Ioanna Kakoulli to investigate applications of this technique taken from the field of forensics to the examination and documentation of archaeological objects.

Congratulations again to them both and we wish them luck with their presentations!

 

Abstracts

Sandstone raw materials from Eastern France: Evaluation of non-invasive portable technologies as potential tools for characterization and sourcing
Brittany Dolph and Christian Fischer

In the Alsace region of eastern France, sandstone is an important local resource which has been utilized by societies throughout time. Although earliest archaeological evidence of usage dates back to the Neolithic, it is mainly during the Gallo-Roman and Medieval periods that this sandstone was extensively quarried, and nowadays is still commercially exploited for building and conservation purposes. Primarily composed of quartz, feldspars, and various types and amounts of micas and clay minerals, the sandstone types present variegated colors and belong to different levels of the Buntsandstein, a lithostratigraphic unit of lower Triassic age. This research explores the potential of X-ray fluorescence (XRF) and ultraviolet/visible/near infrared (UV/Vis/NIR) spectroscopy for the non-invasive characterization of different Buntsandstein sandstone lithotypes using portable instrumentation. The two complementary non-invasive techniques allow identification of both elemental and mineralogical compositions while providing a useful alternative for the analysis of archaeological artifacts and/or field investigations where sampling is not an option. Furthermore, they can be used to document current condition and possible alteration processes in order to identify decision-making criteria for conservation treatments. Preliminary results obtained on reference samples from modern quarries exploiting the Buntsandtein sandstone will be presented and discussed with particular focus on provenance and sourcing.

Beyond the Visible: Macro and Micro Analytical Forensic Imaging for the Documentation and Investigation of Archaeological Objects
Alexis North and Ioanna Kakoulli

Digital analytical imaging utilizing the properties of visible (Vis), ultraviolet (UV), and infrared (IR) light has become a standard documentation and diagnostic tool used by conservators and art historians not only to create a record of an object’s appearance and condition, but also to uncover its method of manufacture, history, and previous conservation treatment. This non-invasive method has enabled the examination of a variety of objects of different geometry, complexity, and value providing useful information not discernible with the naked eye. Recent advancements in the medical and forensic imaging fields have led to the introduction in conservation of improved methods in the examination and documentation of objects of archaeological, historical, and artistic value.

This paper discusses the application of a forensic alternate light source (ALS) with tunable light capabilities for the analysis of objects under specific wavelengths of light and illumination conditions. Combining the tunability of the light source with longpass, shortpass, and bandwidth filters positioned in front of a modified DSLR camera in which the UV/IR blocking filter has been removed, an object is analyzed using reflectance and fluorescence imaging at the spectral range between 350 nm (ultraviolet-UV) and 1000 nm (near infrared-NIR). From the monochromatic images captured, false-color reconstructed trichromatic images including UV and IR false-color images can be obtained, enhancing specific features not easily discernible in the original black and white images, and assisting in the qualitative identification of certain materials.

The results obtained from this versatile approach show that augmenting analytical imaging with forensic technologies is an invaluable first step in the
examination of objects, being an excellent tool for screening and preliminary characterization of materials. For example, reflectance in the UV and
luminescence in the visible and NIR were performed on an ancient ceramic with a highly obscured surface, revealing long-lost decoration not visible in
standard UV-induced visible fluorescence or NIR reflectance imaging. Issues of authenticity in a law enforcement setting were also resolved with the discovery and identification of traces of ancient paints based on their specific visible and infrared fluorescence emissions.