UCLA/Getty Conservation Program

A graduate conservation training program focusing on the conservation of archaeological and ethnographic materials


Leave a comment

UCLA/Getty Program Welcomes Bianca Garcia, Program Manager for the Mellon Opportunity for Diversity in Conservation

The UCLA/Getty Program is pleased to welcome Bianca Garcia as the new Program Manager for the Andrew W. Mellon Opportunity for Diversity in Conservation.

Bianca is a Paintings Conservator. She received her B.A. in Art Conservation from the University of Delaware, and her M.S. in Art Conservation from the Winterthur/University of Delaware Program in Art Conservation. She has worked at the Balboa Art Conservation Center, Cleveland Museum of Art, Museo Nacional Centro de Arte Reina Sofia, Western Center for the Conservation of Fine Arts, and the Museo de Arte de Puerto Rico.

To find out more information on the Opportunity for Diversity in Conservation or to get application details for the upcoming workshop to be held in July 2019, please visit: uclagettydiversityinitiative.wordpress.com.

IMG_3359


Leave a comment

Class of 2016 3rd year Internship & Thesis Presentations

It’s the end of the quarter and today, the class of 2016 returns to our conservation training labs at the Getty Villa to give their final presentations as graduate students in our program.  They will be presenting on their 3rd year internships, as well as discussing the work they did for their MA thesis projects.  The day will end with a  small reception to celebrate the completion of their conservation degree and graduation!

A list of their 3rd year internship placements can be found on this previous post.   Here is a list of the M.A. thesis research they will also be sharing with us:

  • Colette Badmagharian – Piecing together the History of an 18th-century printed Armenian Prayer Scroll: The Study of Cultural Context and Manufacturing Techniques
  • Betsy Burr – Dye analysis of archaeological Peruvian textiles using surface enhanced Raman spectroscopy (SERS)
  • Lesley Day – A Study of the Moiré Pattern of Tortoiseshell: Morphology of the Pattern, Techniques for Documentation, and Alterations of the Pattern and Shell by Accelerated Light Aging 
  • Tom McClintock – Documentation and Technical Study of Torqua  Cave
  • William Shelley – Biocorrosion of Archaeological Glass
  • Heather White – An Analysis of Unidentified Dark Materials Between Inlaid Motifs on Andean Wooden Qeros

Congratulations to the class of 2016 and good luck on your presentations today!


Leave a comment

Class of 2018 Summer Internships

The quarter is coming to an end and as our students are working to finish up object treatments and projects, they’re also getting ready to head out on their summer internships.  Here’s a list of the great places our students will be going to this summer:

We hope they enjoy their time at their internship sites and we look forward to hearing about the work they did when they come back this fall!


Leave a comment

Tight, Aligned Joins Does Not a Sprung Vessel Make

In our first quarter class, CAEM 260: Structure, Properties, and Deterioration of Ceramic, Glass and Glazes, we were assigned a ceramic object on loan from  Southwest Museum of the American Indian Collection, Autry National Center to examine, document, and treat the following quarter. I was given a low-fired, light-colored Chiriqui vessel whose largest condition issue was its fragmentary state; the vessel was in 5 large fragments with additional small pieces in an accompanying bag (Fig. 1). As I would soon learn, assembling a broken vessel is not simply putting a puzzle back together and finding which pieces go where. The stress released as a vessel is broken can result in fragments that don’t quite meet up to complete the object as it was before—and I learned exactly how frustrating it can be to achieve tight and aligned joins with stubborn objects like this!

Fig. 1. A soon-to-be joined Chiriqui vessel, comprised of 5 large fragments and several small pieces.

Fig. 1. A soon-to-be joined Chiriqui vessel, comprised of 5 large fragments and several small pieces. Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

 

Joining my vessel (with 40% Acryloid B-72 in acetone using a brush) went quite well in the beginning, such as with Fragments C and E  (Fig. 2).

Fig. 2. Fragments C and E prior to joining (a) and after joining (b); the resulting join was tight and aligned (c).

Fig. 2. Fragments C and E prior to joining (a) and after joining (b); the resulting join was tight and aligned (c). Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

 

I determined the best sequence would be to join Fragments C-E-A and Fragments B-D (Fig. 3).

Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

 

These two sections would then come together to complete the vessel…however this didn’t prove to be as easy as I had thought. I found that while one side of the join was well aligned and tight, the other side by comparison was like a mile-wide fissure as far as I was concerned (Fig. 4); a jolting discovery for a newbie in training! The two sections just didn’t fit, despite careful and tight joining of the fragments that comprised them.

Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

 

Any ideas I had about merely adding adhesive and piecing the vessel back together were naively simple and optimistic in hindsight, but fortunately lab manager and conservator, Vanessa Muros, was able to guide me through a more complicated (and at times scary!), multi-stage aligning method involving heat and pressure. The misaligned fragments were adjusted using a hair drier (set to a low temperature) to soften the B-72, and then pressure was applied using 3M Coban self-adherent wrap and soft-grip clamps, with barriers of thin Ethafoam and Volara (Figs. 5-6); slow tightening of the Coban wrap was performed regularly using a wooden popsicle stick. This process may seem simple, but pressure was required in multiple directions and aligning one area often caused another to move and misalign; all joins had to be considered. It became a battle over control between what I wanted the fragments to do and how they naturally wanted to be, all while gauging the safety of the object and determining when enough was enough.

Fig_5_HWhite_Blog_Post

Figures 5-6.  Alignment of the joins. Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

Figures 5-6. Alignment of the joins. Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

 

In the end, relatively good joins were achieved overall (Figs.7-8). The changes that occurred from the stress released upon breaking still prevented perfectly tight and aligned joins everywhere, but the best compromise was achieved and the results were more than satisfactory. I was able to learn about the unforeseeable problems that can occur during the treatment of ceramics, and I gained a greater feel for the material and how it behaves…and I’ll be ready for the next one!

Fig_7_HWhite_Blog_Post

Figures 7-8.  Vessel after treatment. Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

Figures 7-8. Vessel after treatment. Southwest Museum of the American Indian Collection, Autry National Center, Los Angeles; 491.G.1524

by Heather White (’16)


Leave a comment

ISA 2014

Here at the UCLA/Getty Program, we’re gearing up for the International Symposium on Archaeometry (ISA), taking place May 19-23. This year, the ISA is being held at both the Getty Villa and at UCLA, organized by UCLA/Getty Program chair Dr. Ioanna Kakoulli and Dr. Marc Walton, senior scientist at NU-ACCESS (and formerly a scientist at the Getty Conservation Institute). Our program is well represented at the conference, with several posters and paper presentations and faculty chairing various sessions.

If you’re attending the conference, make sure to check out the presentations below by the UCLA/Getty crew. You can find more information on the conference here and the schedule and abstracts here. We’ll be posting pictures on our Facebook page so make sure to check out the album ISA 2014 throughout the week. We’ll also be posting on our twitter account @UCLAGettyCons using the hashtag #isa2014.


POSTER SESSION I
Monday, May 19 2:30-4:30, Getty Villa

Provenance Study of Obsidian Artifacts from the Fowler Museum Collection (UCLA) using a Handheld X-ray Fluorescence Spectrometer
Kristine Martirosyan-Olshansky1, Christian Fischer1 and Wendy Teeter2

1. Cotsen Institute of Archaeology, UCLA, Los Angeles
2. Fowler Museum, UCLA, Los Angeles

Over the past few decades, research on geochemical characterization of obsidian archaeological artifacts and geological samples from the greater American Southwest has been extensive, primarily for provenance purposes (Shackley, 1995; Ambroz et al 2001; Eerkens and Rosenthal, 2004; Ericson et al., 2004; Eerkens et al., 2008). Using different analytical techniques, such as neutron activation analysis (NAA), inductively coupled plasma mass spectrometry (ICP-MS), and laboratory and handheld X-ray fluorescence (labXRF and pXRF), the elemental fingerprint of obsidian artifacts can be established and correlated to known geological sources. This paper presents preliminary results for the geochemical characterization of an obsidian assemblage from the Fowler Museum collections consisting of one hundred fifty-six obsidian samples from various sites in California. The assemblage was analyzed with a Bruker handheld XRF to determine the number of groups with different geochemical signatures. Data were compared to \geological and reference samples from known California, Arizona, and Eastern Oregon sources in an attempt to assign individual groups to specific obsidian sources. Using elements bivariate plots and multivariate statistics, and beside several outliers, six distinct obsidian groups were identified based primarily on the concentrations of iron (Fe) and some trace elements, in particular strontium (Sr), yttrium (Y), zirconium (Zr) and Niobium (Nb). Although obsidian source attribution remains challenging for such a diverse assemblage, one artifact group could be confidently assigned to the Obsidian Butte source in San Diego County while a large number of samples from obsidian-rich northern California sites cluster well with sources located within the Coso volcanic mountain range in central-eastern California. Finally, the results for these groups are discussed in terms of artifacts spatial and temporal distribution which provide useful insight on procurement patterns for this material in California.

References
Ambroz, J.A., Glascock, M.D. and Skinner, C.E., 2001. Chemical Differentiation of Obsidian within the Glass Buttes Complex,
Oregon. Journal of Archaeological Science, 28, 741-746.
Eerkens, J.W. and Rosenthal, J.S., 2004. Are obsidian subsources meaningful units of analysis?: temporal and spatial patterning of subsources in the
Coso Volcanic Field, southwestern California. Journal of Archaeological Science, 31, 21-29.
Eerkens, J.W., Spurling, A.M. and Gras, M.A., 2008. Measuring prehistoric mobility strategies based on obsidian geochemical and technological
signatures in the Owens Valley, California. Journal of Archaeological Science. 35, 668-680.
Ericson, J. E. and Glascock, M.D., 2004. Subsource Characterization: Obsidian Utilization of Subsoures of the Coso Volcanic Field, Coso Junction,
California, USA. Geoarchaeology: An International Journal., 19, 8, 779-805.
Shackley S.M., 1995. Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. American
Antiquity
, 60, 3, 531-551.

 
The Technology of Late Bronze Age/Early Iron Age Glass in the Mediterranean: Analytical Studies of Vitreous Materials from Lofkënd
Vanessa Muros,1,2 Nikolaos Zacharias2 and John K. Papadopoulos,3

1. UCLA/Getty Conservation Program, Los Angeles, CA, USA.
2. Dept. of History, Archaeology and Cultural Resources Management, Univ. of Peloponnese, Kalamata, Greece.
3. Cotsen Institute of Archaeology, UCLA, Los Angeles, CA, USA.

The application of archaeometric techniques to the study of archaeological glass has been critical to identifying how and where this material was manufactured. Despite the research that has been conducted to date, questions still remain about the raw materials used and the location of primary glass production centers, especially during the Late Bronze Age and Early Iron Age. Investigations of glass from sites such as Frattesina in Italy and Elateia in Greece have revealed new technological approaches that appear during this time period and possibly the identification of new regions where glass was produced. This challenges the idea that glass in the Mediterranean was imported from either Egypt or the Near East. Only with additional investigations of ancient glass from this region and time period can technology and production be better understood. This paper aims to add to the current body of knowledge of LBA/EIA glass production by presenting the study of vitreous materials from the tumulus of Lofkënd in southwestern Albania. In this ongoing project, several analytical techniques (XRF, SEM-EDS, ICPMS, SIMS) were employed to identify the technology of a group of 12th-9thc. BC glass and faience beads. The data obtained on trace elements and stable isotopes will allow for the method of manufacture of these materials from Lofkënd to be identified and to determine where the glass and faience was made. The results will provide crucial information to our understanding of ancient technology, trade, and glass manufacture during the transition from the Bronze to the Iron Age, and the relation of Lofkënd to production centers in the Mediterranean, Egypt and the Near East

 
POSTER SESSION II
Wednesday, May 21 2:30-4:30 California NanoSystems Institute (CNSI), UCLA

Application of VPSEM-µRS for SERS analysis of archaeological textiles
Diana C. Rambaldi1, Sergey V. Prikhodko2, Vanessa Muros3, Elizabeth Burr3, and Ioanna Kakoulli2,3

1. Conservation Center, Los Angeles County Museum of Art, 5905 Wilshire Blvd, Los Angeles, CA 90036, United States.
2. Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, 3111 Engineering V, Los Angeles, CA 90095-1595, United States.
3. UCLA/Getty Conservation Program, Cotsen Institute of Archaeology, University of California, Los Angeles, 308 Charles E. Young Drive North A210 Fowler Building/Box 951510, Los Angeles, CA 90095-1510, United States.

The site of Huaca Malena on the coast of southern Peru is a platform and cemetery of the Wari state from the Middle Horizon period (AD 700 -1100). The cemetery has yielded mummy textiles, some of which are typical for the region, and others with motif traditions indicative of the Sierra Andes of southeast Peru. It is unclear if this indicates migration, exchange, or transmission of aesthetics. Analytical methods for the identification of organic colorants on archaeological textiles can offer a way to retrieve information from these delicate artifacts. Among other analytical methodologies, Surface-Enhanced Raman Spectroscopy (SERS), achieving single molecule detection, has recently emerged as a powerful technique for the identification of colorants from size-limited and irreplaceable archaeological materials1. For direct, extractionless SERS analysis of colorants on textiles, silver nanoparticles (AgNPs) are deposited on a single fiber and SER spectra are acquired using a micro-Raman spectrometer (μRS)2. Since the deposition of AgNPs is a crucial step to generate the SER effect, Scanning Electron Microscopy (SEM) appears to be an ideal tool to evaluate the AgNP coverage and locate suitable areas for successful and reproducible analysis.

In this study, direct, extractionless SER analysis of organic colorants on single fibers was performed for the first time using a μRS interfaced with a variable pressure SEM (VPSEM). An alpaca fiber dyed with Peruvian cochineal and a wool fiber dyed with Indian madder were treated with a silver colloid and introduced in the SEM chamber. The high resolution imaging of SEM was used to select areas showing diverse deposition of AgNPs. SERS analyses were then directly carried out in these areas without moving the sample. The analysis of areas with a thick layer of nanoparticles or without nanoparticles resulted in low signal to noise ratio or no signal at all. Areas with a thin layer of deposited nanoparticles led to optimal reproducible spectra characteristic of the dye molecules. The results clearly illustrated the potential of this quasi non-destructive approach for the identification of different organic colorants while information can also be obtained on the AgNP coverage as well as the morphology of the fibers. This methodology will be applied to study collections of Peruvian archaeological textiles including that from the site of Huaca Malena. The application of VPSEM-µRS, coupled with energy-dispersive spectroscopy (EDS), will also provide a unique opportunity to study a variety of other archaeological materials including pigments, glazes, and glasses.

References
1. Pozzi, F., Poldi, G. De Luca, E., Guglielmi, V. Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus. Archaeol Anthropol Sci 2012, 4:185–197
2. Brosseau CL, Casadio F, Van Duyne RP: Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc 2011, 42:1305–1310.

 
POSTER SESSION III
Thursday, May 22 2:30-4:30 California NanoSystems Institute (CNSI), UCLA

Non-invasive Analysis of Chinese Blue-and-white Porcelain from Indonesia and the Philippines
Ellen Hsieh1 and Christian Fischer1

1. Cotsen Institute of Archaeology, UCLA, Los Angeles, USA.

Blue-and-white porcelain has been a symbol of Chinese material culture for the last seven centuries and has spread all over the world with high impact on other cultures. Export blue-and-white porcelain was usually manufactured in common kilns as opposed to the ware from official kilns reserved for imperial court use, rewards and diplomacy purposes. During the 16th-17th century, Jingdezhen and Zhangzhou were the two main production
centers from which blue-and-white was exported followingnewly established global trading networks. The distinction between products from these two centers is of prime importance for archaeological research because it relates to topics such as trade routes, value or class. However while the provenance of complete porcelain pieces can often be easily identified from stylistic and technology-related features, attribution of small sherds to specific production sites remains a challenging task that requires a more in-depth analysis of the material. During the last decades, most scientific studies have focused on ware from official kilns (Yu and Miao, 1996; Wu et al., 2000; Wen et al., 2007) and only recently, owing to archaeological excavations of common kilns at both sites, useful reference data became available (Wu, et al., 2007; Ma, et al., 2012) providing solid support for provenance studies (Dias, et al., 2013). In the research presented here, blue-and-white porcelain sherds from Banten (Indonesia) and Visayan (Philippines) were analyzed with handheld XRF (p-XRF) and UV/Vis/NIR spectroscopy to acquire compositional data of the ceramic body, glaze and blue pigment and to evaluate the potential of these non-invasive and portable techniques at discriminating different source materials and production sites. Beside the expected use of Mn-rich cobalt ores for the blue pigment, p-XRF results have indicated that products from Jingdezhen and Zhangzhou common kilns can be successfully differentiated based primarily on the concentrations of some key trace elements such as Zr, Ti and Sr, most likely correlated to the composition of local raw material sources. The approach appears therefore promising and could offer a fast and cost-effective way for the characterization and sourcing of export blue and white porcelain sherds, especially for field analysis.

References
DIAS, I.M., PRUDÊNCIO, I.M., PINTO DE MATOS, M.A. and RODRIGUES L.A., 2013. Tracing the origin of blue and white Chinese porcelain ordered for the Portuguese market during the Ming dynasty using INAA. Journal of Archaeological Science 40, 3046-3057.
MA, H., ZHU, J., HENDERSON, J. and LI, N., 2012. Provenance of Zhangzhou export blue-and-white and its clay source. Journal of Archaeological Science 39, 1218-1226.
WEN, R., WANG, C.S., MAO, Z.W., HUANG, Y.Y. and POLLARD, A.M., 2007. The chemical composition of blue pigment on Chinese blue-and-white porcelain of the Yuan and Ming dynasties (AD 1271-1644). Archaeometry 49, 1, 101-115.
WU, J., LEUNG, P.L., Li, J.Z., STOKES, M.J. and LI, M.T.W., 2000. EDXRF studies on blue and white Chinese Jingdezhen porcelain samples from the Yuan, Ming and Qing dynasties. X-ray Spectrometry 29, 239–244.

 
A Preliminary Study on a Bronze Incense Burner Dated to the Eastern Jin Dynasty (317-420A.D.) in Nanjing City, China
Wang Xiaoqi1, Chen Dahai2, Wang Hong2 and Huang Xiaojuan3

1. Division of Archaeology, Department of History, Nanjing University, Nanjing, China.
2. Division of Archaeology, Nanjing Municipal Museum, Nanjing, China.
3. Conservation Lab, Archaeological Institute of Shaanxi Province, Xi’an, China.

One of the significantly archaeological discoveries in the year of 2011 in Nanjing city, China, was a grand brick chambered tomb dated to 317-420A.D., associated with many spectacular findings, such as golden ornaments, lacquer vessels, natural beeswax, celadon containers, alchemical pills, as well as other metal objects. In terms of historical documentation, the tomb location belonged to a cemetery of a high rank honorable family, mostly presumed to be well-known alchemical pioneers and active practitioners during the Eastern Jin Dynasty (317-420A.D.), a flourishing period of Taoism in ancient China. Aided by local archaeologists, a metal incense burner composed of a bird-formed lid, a body decorated with birds and human production shaped figurines and a plain basin-patterned base with an auspicious animal lying in the center, was chosen to be firstly explored by scientific methods. The whole vessel was well preserved and nearly intact, except base edge with a small-sized cut. Therefore, a tiny piece along the cut was sampled and analyzed by using x-ray fluorescence, μ x-ray fluorescence, metallographic microscopy, as well as scanning electron microscopy coupled with EDS to determine the composition, structure and manufacturing technology.

The semi-quantitative x-ray fluorescence analysis showed the sample mainly had copper, silica, tin, lead, iron and aluminum, with potassium, chlorine, calcium and phosphorus in minor. After detection by using μ x-ray fluorescence on a fresh section, map scanning revealed copper was mostly rich in the whole body, with minor evenly distributed tin and dottedly distributed lead, whereas other elements including silica, aluminum, potassium, chlorine, calcium and phosphorus were mainly found along the surface, which were attributed to the contaminants from the burial soils, and iron probably due to an adjacent iron ink slab. The metallographic observation unveiled a typical dendritic casting microstructure, but dendritic segregation was unobvious because of low tin content. The results conducted by scanning electron microscopy equipped with EDS were in consistent with metallographic observation and μ x-ray fluorescence result, especially EDS analysis indicated tin content was averagely over 4%, whereas lead was 1% to 2%. The experiments revealed the burner base was mainly made of copper by casting technology; tin was purposely added in; lead was probably spontaneously brought in from either copper ores or remelting process. It was different from local archaeologist’s original opinion, which was inclined to be an artifact made of pure copper, referenced from a historical record written by contemporaneous alchemists, one of whom was mostly presumed to be the potential tomb owner. However, deep investigation needed to be performed on diverse parts of the burner together with other excavated artifacts in order to seek more powerful evidence to provide a reasonable answer.


Leave a comment

ANAGPIC 2014, here we come!

We’re getting ready to head out later this week to the annual meeting of the Association of North American Graduate Programs in Conservation (ANAGPIC) hosted this year by our colleagues at the Art Conservation Dept., Buffalo State College.  We’re really looking forward to the student papers presented on Friday, the professional talks on Saturday focusing on “Extreme Conservation”, and meeting with colleagues and friends.

We’re also hoping the rumors of spring-like weather back east are true, since some of us are so acclimatized to the weather out here, anything below 65 causes hypothermia (Did I mention it’ll be in the 80’s here this week?!)

This year we’re excited to have our program represented again at the conference.  We have two students, and an alum, presenting. Below is a preview of their talk titles and abstracts.

And make sure to stay tuned for posts and pictures on our Twitter feed (@uclagettycons) and our Facebook page (https://www.facebook.com/UCLAGettyProgram) from #anagpic2014!


Analysis and Conservation of a Pair of Cherokee Black-dyed Buckskin Moccasins: Preliminary Results
Alexis North (3rd year student, currently at University of Pennsylvania Museum of Archaeology and Anthropology)

Chemical Analysis of Archaeological Peruvian Textiles
Betsy Burr (1st year student)

Delaying the Inevitable: An Investigation of Plastic Deterioration in Joseph Beuys Multiples
Nicole Ledoux (alum ’12, currently at the Straus Center for Conservation and Technical Studies, Harvard Art Museums)




Post by Vanessa Muros, Conservation Specialist, UCLA/Getty Program


3 Comments

And so they begin…Welcome to the class of 2016!

It’s Week 2 of the fall quarter and members of this year’s incoming class are excited to begin their work in the UCLA/Getty Conservation Program. They’ve dived right into this quarter’s classes which cover the technology and deterioration of ceramics and glass, principles and ethics in conservation, documentation and imaging techniques and science fundamentals in conservation. They will also have the opportunity to undertake two object based projects as part of their coursework: the examination and documentation of painted plaster and ceramic Oaxacan figurines from the Fowler Museum at UCLA and the documentation and condition assessment of ceramic vessels and figurines from the Southwest Museum-Autry National Center.  They certainly have a busy quarter ahead (and a busy next 2 years). We wish them luck with their coursework and lots of success in the conservation program!

The class of 2016. From L to R: Colette Khanaferov, William Shelley, Tom McClintock, Heather White, Betsy Burr, Lesley Day

The class of 2016. From L to R: Colette Khanaferov, William Shelley, Tom McClintock, Heather White, Betsy Burr, and Lesley Day


1 Comment

Looking forward to the Association of North American Graduate Programs in Conservation annual meeting

 

LA-NAGPIC2013 logo

 

The UCLA/Getty Program—with a lot of help from our friends—is hosting the 2013 annual meeting of the Association of North American Graduate Programs in Conservation on April 25-27. This is the first time ever that this meeting will take place in Los Angeles! We’re so excited that our students designed the swank logo for the conference L-A-NAGPIC 2013. This meeting brings together students, faculty and staff from North American programs offering graduate degrees in conservation, including Buffalo State College, NYU (Conservation Center of the Institute of Fine Arts), Queens University, UCLA/Getty, the Winterthur-University of Delaware Program in art Conservation, and the Straus Center at Harvard which offers graduate fellowships. We are expecting close to 160 guests to visit in April.

Student papers will be presented on April 26 at the Getty Center, with twelve talks covering a broad array of topics in the conservation and preservation of cultural heritage including silk textiles, a 17th century manuscript, a painting by Georges Seurat, an orangutan taxidermy specimen, pinball art, and plant-based contemporary art as a sampling. Our own students at the UCLA/Getty Program in Archaeological and Ethnographic Conservation will present two papers: Caitlin Mahony is presenting her research and treatment of an American Indian quillwork leather vest in the collection of the Fowler Museum at UCLA, and Casey Mallinckrodt will present her technical research and condition assessment of a Ptolemaic Egyptian sarcophagus from the San Diego Museum of Man. Their abstracts follow this post.

The second day of talks at the UCLA Lenart Auditorium, in the Fowler Museum on Saturday April 27, includes an Honorary Angelica Rudenstine Lecture presented by Robyn Sloggett, Director of the Centre for Cultural Materials Conservation at the University of Melbourne, Australia. Prof. Sloggett’s compelling topic is “Why conservation is critical to the future of our planet”. This lecture will be followed by our own Andrew W. Mellon Education Resident and Visiting Assistant Professor Tharron Bloomfield, moderating a panel discussion that builds on the specialties emphasized in the UCLA/Getty Program. “Conserving Communities” will include an indigenous archaeologist Desiree Martinez, an indigenous textile conservator Rangi Tena koe, as well as Judy Baca and Robyn Sloggett, scholars whose own work in preservation incorporates community members. Saturday will include a poster session with three UCLA/Getty posters, one authored by three students describing varied approaches to American Indian leather moccasin repairs, another about the use of pigment identification performed on the Ptolemaic child sarcophagus lid as an aid in identifying reused structural elements, and a third poster about the associated values considered in the development of a site management plan for the location of the Woodstock Festival of 1969.

ANAGPIC 2013 promises to promote research, conservation excellence, fun and SoCal weather!

Prof. Ellen Pearlstein

__________________________________________________________________________

Mending Leather and Quillwork on a Native American Vest: The Challenges and Achievements
Caitlin Mahony

In the fall of 2012, treatment was undertaken on a leather Native American vest with quillwork decoration. This paper will discuss the challenges that were encountered during the mending of the damaged leather and solutions that were found, which provided stability without further compromising the condition of the substrate. The vest to be discussed is from the Fowler Museum and is loosely attributed to the Sisseton (Santee) Sioux Indians. Its major condition issues were creases, tears, and losses to the leather, especially in the armhole region, which presumably occurred from repeated abrasion and exposure to moisture from extensive use. Pervasive insect damage throughout the quillwork left a significant amount of quills lost, lifting, or insecure and in need of stabilization. An analysis of a sample of collagen fibers from the leather revealed a shrinkage temperature in the range of 32-36, far below the range that would be expected of stable oil tanned leather, as is commonly used by the tribes of the Sioux Nations. Due to the instability of the leather, it was deemed necessary to develop a treatment that would avoid excessive use of solvents, exclude any use of water, and avoid using heat to reactivate adhesives. After evaluating several adhesives and carriers through the development and testing of mock repairs with chamois, an interior hinge system of Reemay with adhesive film that reactivated with solvent was used with great success. The same adhesive film with Tyvek carrier was used to stabilize broken and lifting quills. The mends to the leather and quill both demonstrated a desired strength and flexibility. Details of these mending procedures will be discussed as well as the decision-making process that determined the treatment materials and methods.

This Old Foot: Technical analysis of a Ptolemaic Child Sarcophagus to Identify Structural Components Repurposed from other Ancient Coffins
Catherine (Casey) S. Mallinckrodt

It is well known that Egyptians constructed highly elaborate and protective structures to transport the dead into the afterlife. While it might seem inconsistent that coffins would be emptied of their inhabitants and repurposed, in the approximately 3000 thousand years during which ancient Egyptian funerary practices involved decorated coffins, there is evidence of significant reuse to meet the needs of the always-flourishing funerary business.   Through the waves of “Egyptomania” that began after the 18th century rediscovery of ancient Egyptian tombs, coffin parts have been repurposed to meet the demands of collectors.

The first stages of the technical analysis of a Ptolemaic Child Sarcophagus from the San Diego Museum of Man has revealed the possibility that both the foot block and the carved face may have been reused from different coffins and at different times.    This talk will describe the structural and stylistic differences that suggested reuse, describe the analytic methods used to distinguish the component parts, and present the relevant results of the analysis. The content of scholarly consultation and research will be presented including a discussion of both ancient and modern contexts of reuse.

The description of the structure and methods of manufacture will be accompanied by graphic illustrations and x-radiographic images. Comparison of pigment mixtures and the microstructure of particles from the head, body and foot will be accompanied by photomicrographs, x-ray fluorescence analysis, and forensic photographic images that demonstrate the presence of Egyptian blue.

It is hoped that this talk will offer meaningful information about the effectiveness of these analytic techniques in exploring characteristic differences in components of an ancient object, as well as considering the pathway this object might have taken from Ptolemaic Egypt to a conservation lab in coastal California.


4 Comments

2012 ANAGPIC Conference

Next week we will be heading to New York City to attend this year’s ANAGPIC conference hosted by the Conservation Center of the Institute of Fine Arts, NYU from April 12-14. Here’s a sneak peak at what our 1st and 3rd years will be presenting:

Papers
The ‘dead-bucket’: An inexperienced conservator’s guide for evaluating setbacks
Ayesha Fuentes and Geneva Griswold

Setbacks are an often-unacknowledged reality of conservation practices. This paper examines various types of setbacks, shortcomings, and mistakes in conservation practice, including unsuccessful treatments, errors in judgment, and the limits of intervention. While it may be tempting for a young conservator to anticipate these types of experiences as ‘failures,’ we argue that these situations provide opportunities for growth and development. While a senior professional may readily recognize the value in setbacks and contextualize them by drawing upon their past experiences, we seek to explore the ways in which a less seasoned practitioner may productively reinterpret or reevaluate such situations in terms of our expectations, achievements, and sense of personal responsibility. Categories of setbacks will be illustrated with specific examples from personal experiences and those of our cohort-at-large as pre-program trainees and students.

This project was first inspired by the attempted re-treatment of a ceramic object during the Fall of 2011 at the UCLA/Getty Conservation Training Program. While the objectives of the assigned exercise were unmet — the object was returned to the lending institution in the same condition that it arrived at our training labs— the student learned appreciably about the effects of material degradation, the decision-making process for designating an object as un-treatable, and the ethical considerations such conclusions require. Further examples of setbacks include errors in judgment — such as removing original polychromy by wheeling a tall, wooden sculpture into a low door frame — and a lack of self-awareness with drastic consequences for object safety when a ceramic figure was knocked off a table as a result of fatigue. By reflecting on and discussing the setbacks we encounter as inexperienced conservators, it is possible to glean lessons about our limitations and expectations of conservation practices, and to integrate these into our evolving working methods. Strategies for reevaluating these experiences include viewing them in terms of their positive role in developing long-term goals and practical methodologies as well as promoting a non-punitive and professional culture of honesty, humor, and acceptance. We hope that our attitude will help establish, in the words of Marincola and Maisey (2011), ‘a more fruitful learning culture’ for the benefit of both the field of conservation and its mission to protect and preserve historic and artistic materials.

We hope that by encouraging a collaborative and collective acknowledgement of our limits and, simply put, humanity, will help redefine learning goals for emerging conservation professionals. We believe that fostering an open dialogue amongst our peers, and eventually the conservation community-at-large, will promote a deeper understanding of our methods and the body of wisdom from which we draw as a discipline. Additionally, we would like to promote the idea and organization of an online, perhaps anonymous, forum for practitioners at all stages of their careers to report similar experiences.

 
Unmasking the surface: A technical analysis of eight polychrome Kuba masks
Geneva Griswold and Madeleine Neiman

The Kuba region, positioned in south-central Democratic Republic of Congo, between the Sankuru, Kasai, and Lulua Rivers, is widely renowned for its vibrant masking tradition. Funerals and initiation ceremonies often include a masquerade, honoring the initiate through dance, masks, clothing, and associated accouterments. While the fields of anthropology and art history have devoted significant time and study to the Kuba masquerade traditions, technical analysis of the methods and materials used in the masks’ fabrication is limited. During the fall of 2011, the first year students at the UCLA/Getty Program in collaboration with their colleagues in the Material Science and Archaeology departments conducted a technical study of a suite of eight Kuba masks in the Fowler Museum’s Wellcome Trust collection. Students employed both non-invasive and invasive techniques including: forensic imaging, X-ray fluorescence spectroscopy (XRF), and ultra-violet-visible-near-infrared (UV-Vis-NIR) spectroscopy, optical microscopy under white, plane, and cross-polarized light (PLM), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and microchemical testing. This paper endeavors to place the information gathered within the larger context of Kuba scholarship, by highlighting the common aspects between the masks as well as their variability. Examination of this collection of Kuba masks contributes to further understanding of the masks’ construction, adaptation, and use, thereby promoting a deeper and fuller understanding of the objects as historic artifacts as well as aid in determining proper methods of handling, storage, display, and conservation.

 
Posters
Treatment of eagle and northern flicker feathers on a Native American shield cover
Tessa de Alarcon

Stabilization of eagle and Northern flicker feathers (Colaptes aurates) was undertaken on a Plains shield cover in the collection of the University of Pennsylvania Museum of Archaeology and Anthropology. Material testing for vane repair and loss compensation was conducted on damaged turkey feathers. Vane repair testing included bridges of hair silk adhered with 5% methyl cellulose as well as linings of light weight Japanese tissue, Hollytex (spunbonded polyester), and silk Crepeline each adhered with 2% methyl cellulose, Lascaux 360, Lascaux 498, or AYAF (polyvinyl acetate resin). Both of the Lascaux adhesives and the AYAF were painted onto the supports and reactivated with heat or solvents. Methyl cellulose performed better than the other adhesives and the hair silk bridges were the least visually intrusive and provided the best support. Loss compensation methods tested included two weights of Japanese tissue (light weight and heavy weight), as well as Hollytex adhered with 2% methyl cellulose. Since methyl cellulose performed better than the other adhesives, it was the only one tested. The lightweight Japanese tissue adhered best in the loss compensation tests. Hair silk and Japanese tissue adhered with methyl cellulose were used on the shield cover feathers with good results.

 
The Significance of Surface in Central African Masks: Pigment Identification of Polychrome Wood masks from the Congo
Geneva Griswold, Casey Mallinckrodt, Brittany Dolph

The treatment of surfaces in African masking traditions reflects the adaptation of materials for cultural ritual and use. This poster presents a study of surfaces using micro-analytic techniques, whose results provoke questions regarding the masks’ methods of manufacture, material adaptation, and provenance. The colors of different chemical composition and microstructure were sampled from a suite of eight polychrome wood masks from the Kuba region of the Democratic Republic of Congo. Dispersion and cross-section samples of the wood and pigments were analyzed using polarized light microscopy (PLM) and scanning electron microscopy (SEM) in order to ascertain their chemistry and composition. PLM enabled direct observation of optical characteristics relating to particle size, habit, relief, and color under plane polarized light, as well as crossed polarized light observation of birefringence and interference colors, when present. Such characteristics successfully identified the pigments applied on each mask, and facilitated the comparison of manufacturing techniques and materials within the suite. As well, PLM and SEM analyses corroborated evidence attained from XRF, XRD, UV/Vis/NIR, and SEM/EDX investigations. This investigation contributes to our understanding of Kuba mask materials and production, as well as highlights the role of microscopy and microanalysis in the study of African masking traditions.

 
Tunable Light Sources and Modified Cameras: Utilizing Imaging Techniques to Better Understand Ancient Art at the J. Paul Getty Museum
Dawn Lohnas

Two relatively new imaging techniques, used by both the UCLA/Getty Conservation Program and the Getty Villa antiquities conservation laboratory, have recently been adopted to assist with the non-invasive analysis and documentation of artifacts. The UCLA/Getty Program utilizes a modified camera with an “alternate light source (ALS)” (Mini-CrimeScope®400), which is traditionally used in forensic science. Providing light at narrow band wavelengths using a series of filters, this equipment allows for easy analysis over a broad spectral range. Faintly painted figural outlines on a recently acquired lekythos in the Getty Villa collection were successfully photographed using this technique, and are now included on the object label in the museum’s galleries, illustrating how the vase once looked in antiquity. In addition to the ALS, scientists, conservators and students at the Getty make use of a modified camera system for capturing Visible-induced infrared luminescence of Egyptian blue. It can be used in-situ to confirm the identification of Egyptian blue without sampling, and has helped to identify areas of restoration, and areas of paint decoration that are difficult if not impossible to identify under normal lighting conditions. Several case studies involving these imaging techniques will be discussed.


Leave a comment

Conservation program projects in 2010 issue of Backdirt

The latest issue of Backdirt, the annual magazine of the Cotsen Institute of Archaeology, highlights some of the projects undertaken in 2009-2010 by students and faculty of the UCLA/Getty Conservation Program.